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Abstract. We present a heuristic, semiphenomenological model of the anomalous temperature (T ) de-
pendence of resistivity ρxx recently observed experimentally in the quasi-one-dimensional (Q1D) organic
conductors of the (TMTSF)2X family in moderately strong magnetic fields. We suggest that a Q1D con-
ductor behaves like an insulator (dρxx/dT < 0), when its effective dimensionality is one, and like a metal
(dρxx/dT > 0), when its effective dimensionality is greater than one. Applying a magnetic field reduces the
effective dimensionality of the system and switches the temperature dependence of resistivity between the
insulating and metallic laws depending on the magnitude and orientation of the magnetic field. We criti-
cally analyze whether various microscopic models suggested in literature can produce such a behavior and
find that none of the models is fully satisfactory. In particular, we perform detailed analytical and numeri-
cal calculations within the scenario of magnetic-field-induced spin-density-wave precursor effect suggested
by Gor’kov and find that the theoretical results do not agree with the experimental observations.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 72.15.Gd Galvanomagnetic and
other magnetotransport effects – 75.30.Fv Spin-density waves

1 Experimental introduction

In recent experiments [1–4], a very unusual temperature
(T ) dependence of resistivity was observed in quasi-one-
dimensional (Q1D) organic conductors (TMTSF)2ClO4

(at the ambient pressure) and (TMTSF)2PF6 (at a pres-
sure about 9 kbar) [5] in moderately strong magnetic fields
H of the order of 10 T at T . 50 K. Unexpectedly large
magnetoresistance in these materials has already attracted
attention in earlier measurements [6–8].

The (TMTSF)2X materials consist of one-dimensional
(1D) conducting chains parallel to the crystal axis a
(for general reviews of the (TMTSF)2X materials, see
Refs. [1,9–12]). The chains are weakly coupled in the
two others directions b and c, the coupling in the
c direction being much weaker than in the b di-
rection. In zero magnetic field or in the field par-
allel to the b axis, the resistivity of (TMTSF)2PF6

along the chains, ρaa, depends on temperature ap-
proximately quadratically: ρaa ∼ T 2 [1,4,13], which
is consistent with the standard Fermi-liquid theory [14],
provided resistivity is dominated by electron-electron scat-
tering. When a magnetic field is applied along the c
axis, ρaa does not change appreciably at high tempera-
tures; however, below a certain magnetic-field-dependent
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temperature Tmin ∼ 20 K, resistivity starts to grow with
decreasing temperature: dρaa/dT < 0 at T < Tmin [1,3,4].
In other words, the behavior of the system changes from
metallic, dρaa/dT > 0, to insulating, dρaa/dT < 0, when
the temperature is lowered below Tmin. The temperature
Tmin increases with the increase of magnetic field. Such
a behavior is very surprising in view of the fact that no
thermodynamic phase transition is observed in the sys-
tem at this relatively high temperature Tmin ∼ 20 K.
(A phase transition into the magnetic-field-induced spin-
density-wave (FISDW) state takes place at the transition
temperature Tc ∼ 2 K, which is an order of magnitude
lower than Tmin.) As the temperature is lowered further
below Tmin, ρaa(T ) continues to grow until another tem-
perature scale Tmax ∼ 8 K < Tmin is reached. Magnetore-
sistance is huge at T ∼ Tmax: ρaa at H = 7.8 T is about
10 times greater than ρaa at H = 0 [4]. At the lower
temperatures T < Tmax, behavior of the system starts to
depend crucially on the exact orientation of the magnetic
field [4,15]. If the magnetic field lies in a plane formed
by the direction a of the chains and another integer crys-
tallographic direction, such as c or c + b, ρaa recovers
the metallic behavior dρaa/dT > 0 at T < Tmax. For
other, generic orientations of the magnetic field, ρaa re-
tains the nonmetallic behavior, either continuing to grow
with decreasing temperature: dρaa/dT < 0, or saturating
at a high constant value. The temperature Tmax does not
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depend appreciably on the magnetic field. If at T < Tmax

the magnetic field is rotated in the plane perpendicular to
the direction a of the chains, ρaa exhibits sharp minima
when the field is aligned with the integer planes described
above (the so-called “magic angles” effect). This effect
was discovered experimentally earlier [16–18] following the
theoretical suggestion by Lebed’ [19,20]. Finally, at low
temperatures, the system may enter the magnetic-field-
induced spin-density-wave (FISDW) phase at the transi-
tion temperature Tc ∼ 1–2 K, where ρaa increases sharply.
Other diagonal components of the resistivity tensor of
(TMTSF)2PF6 seem to behave similarly to ρaa: The an-
gular dependence of ρcc [4,21] at T < Tmax and the tem-
perature dependences of ρcc [22,23] and ρbb [23–25] appear
to be qualitatively similar to those of ρaa. However, in the
very recent measurements [24] it was found that, when the
magnetic field is oriented along the magic direction c, ρcc
monotoniuosly decreases with temperature, whereas ρaa
and ρbb exhibit a minimum at T = Tmin. When the mag-
netic field is tilted away from c, ρcc develops a minimum
at a temperature much lower than Tmin for ρaa and ρbb.

In (TMTSF)2ClO4, a magnetic field also causes
ρaa(T ), as well as the NMR relaxation rate 1/T1, to grow
with decreasing temperature at T < Tmin [2,26], which
is an indication of a nonmetallic behavior induced by
the magnetic field. On the other hand, it was shown in
references [21,27,28] that the angular and temperature
dependences of ρcc in (TMTSF)2ClO4 are quite differ-
ent from those in (TMTSF)2PF6 and can be interpreted
within the standard Fermi-liquid picture. The behavior of
(TMTSF)2ClO4 may or may not [28] be complicated by
doubling of the crystal period in the b direction occurring
in this material at T = 24 K. To avoid complications, we
will focus our theoretical study on (TMTSF)2PF6, which
has a simple crystal structure.

The behavior of resistivity in (TMTSF)2PF6 com-
pletely contradicts the conventional Fermi-liquid picture
of a metal with an open Fermi surface. In this picture,
applying a magnetic field perpendicular to the direction
of the chains should produce no or very little magnetore-
sistance, should not alter the metallic temperature depen-
dence of resistance, and should exhibit no magic angles
effect [29]. Thus, unconventional theoretical approaches
are required.

2 Heuristic theoretical picture

We suggest that the following theoretical picture
may qualitatively account for the unusual behavior of
(TMTSF)2PF6 [30].

It is well known theoretically (see, for example,
Ref. [31]) that the orbital effect of a c-axis magnetic field
H on a Q1D conductor is characterized by the cyclotron
energy EH = ebHvF/c, where e is the electron charge, b
is the distance between the chains in the b direction, vF

is the Fermi velocity, and c is the speed of light. For the
realistic values of the model parameters (see Sect. 8), we
estimate that EH/H ≈ 1.8 K/T. The magnitude of the
cyclotron energy, EH ≈ 14 K at H = 7.8 T, is close to the
temperature of the resistivity minimum at that magnetic

field, Tmin ∼ 20 K. Taking into account that the mini-
mum of resistivity clearly has a magnetic origin (it does
not exist without magnetic field), and Tmin grows with
the increase of magnetic field, we suggest that the mini-
mum of resistivity occurs when the temperature reaches
the energy scale of the magnetic field; that is, Tmin ≈ EH .

Now we need to identify the nature of the second en-
ergy scale in the problem, the temperature of the resis-
tivity maximum, Tmax. At the temperatures T > Tmax,
it appears that ρaa depends only on the magnetic field
projection on the c∗ axis perpendicular to the a and b
directions [32]. From this observation, we may conclude
that at T > Tmax the system behaves effectively as a
two-dimensional (2D) system; that is, the coupling be-
tween the chains in the c direction is not relevant. On the
other hand, at T < Tmax the coupling along the c axis
becomes important. This is manifested by the magic an-
gles effect, which is an essentially three-dimensional (3D)
phenomenon involving both the b and c axes. The cou-
pling between the chains along the c axis is characterized
by the electron tunneling amplitude tc, whose magnitude
is believed to be of the order of 10 K [33], which is close to
Tmax ∼ 8 K. Thus, we suggest that the electron tunneling
amplitude tc sets the temperature scale Tmax of the resis-
tivity maximum: Tmax ≈ tc. This conjecture is supported
by the experimental fact that Tmax (unlike Tmin) does
not depend appreciably on the magnetic field [3,4]. We
also need to mention that, according to references [34,35],
the coupling between the chains in the b direction, tb, is
much greater than the temperatures discussed in our pa-
per: tb ∼ 300 K.

Taking into account these energy scales, we identify
three qualitatively different regimes in the behavior of a
Q1D system in a magnetic field:

1) High temperatures: EH ≈ Tmin < T < tb. In this
region, the temperature is greater than both the magnetic
energy EH and the electron tunneling amplitude tc along
the c axis, but lower than the tunneling amplitude tb along
the b axis. Thus, we may neglect both the magnetic field
and the coupling between the chains along the c axis and
treat the system as a normal 2D Fermi liquid without
magnetic field. This results in the quadratic law ρaa ∼ T 2

and the metallic behavior of the resistivity dρaa/dT > 0.
2) Intermediate temperatures: tc ≈ Tmax < T <

Tmin ≈ EH . In this region, the temperature is still greater
than the coupling between the chains along the c axis, so
the system remains 2D; however, the effect of the mag-
netic field becomes important. It is known that, in the
presence of a magnetic field along the c axis, the mo-
tion of electrons along the b axis becomes quantized, and
the dispersion law of electrons becomes one-dimensional
(1D) [36]. The degeneracy of the electron spectrum in the
b direction is a specific manifestation of the Landau de-
generacy in a magnetic field in the case of a 2D system
with a strong Q1D anisotropy. This phenomenon is called
“one-dimensionalization” of a Q1D system by a magnetic
field [11]. Even though the spectrum of electrons becomes
1D and their wave functions become localized in the b di-
rection, the wave functions still spread over many chains
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(if EH � tb), which results in a considerable interac-
tion between different chains [31]. So the system is not
truly 1D, because it does not consist of completely de-
coupled 1D chains. Nevertheless, we may expect that, at
least, some 1D features would be present in this regime
and, via a mechanism that need to be specified, would
lead to an insulating transport behavior dρaa/dT < 0.
In general, 1D systems have stronger tendency toward
insulating behavior than higher-dimensional systems, be-
cause various insulating mechanisms, such as renormal-
ization of umklapp scattering, density-wave instabilities,
and Anderson localization, are more effective in one di-
mension than in higher dimensions. So the conjecture
that the insulating behavior is caused by the magnetic-
field-enforced “one-dimensionalization” is plausible, but
requires detailed studying of a specific mechanism [1]. We
review possible candidates for the mechanism in the next
section and quantitatively analyze one of the mechanisms
in rest of the paper.

3) Low temperatures: T < Tmax ≈ tc. In this region,
the coupling between the (a,b) planes becomes important.
The magnetic field pointing exactly along the c axis does
not affect the electron motion along that axis. Thus, in
addition to the magnetic-field-enforced 1D dispersion law
discussed in part 2, the system acquired an extra disper-
sion in the c direction and becomes effectively 2D, which
results in a metallic, Fermi-liquid behavior dρaa/dT > 0.
If the magnetic field does not point along the c axis, the
component of the field perpendicular to the c axis sup-
presses the energy dispersion along that axis, so the sys-
tem remains effectively 1D and insulating: dρaa/dT < 0.
If the direction of the field is close to the c axis, we expect
resistivity to decrease with decreasing temperature in the
range E(c)

H < T < Tmax ≈ tc and to start increasing again
at T < E

(c)
H , where E

(c)
H is the cyclotron energy of the

electron motion along the c axis, which is proportional
to the projection of the magnetic field perpendicular to
the c axis. The same arguments apply not only to the c
axis, but also to the c+b axis and other integer crystallo-
graphic directions mc+nb. However, because the electron
tunneling amplitudes in these directions decrease rapidly
with the increase of the integers m and n, the effect is
clearly visible experimentally only for the c + b axis.

In summary, we suggest that the unusual transport
behavior of (TMTSF)2PF6 results from the changes in
the effective dimensionality of the system caused by the
applied magnetic field. The system is 2D at EH < T < tb
and effectively 1D at tc < T < EH . At T < tc the system
is effectively 2D for the magic orientations of the magnetic
field and effectively 1D for generic orientations. Whenever
the system is 2D (or 3D), it is a normal Fermi liquid,
and the temperature dependence of resistivity is metallic.
Whenever the system is effectively 1D, the temperature
dependence of resistivity is insulating. The latter state
of the system might be called the magnetic-field-induced
Luttinger insulator (MFILI), by analogy with the term
“Luttinger liquid”, which refers to the metallic state of a
1D system [37].

We do not have detailed mathematical calculations
that can prove the heuristic picture outlined in this sec-
tion. Nevertheless, we can predict some experimental ef-
fects based on this picture. In references [38,34], oscil-
lations of ρcc upon rotation of a magnetic field in the
(a, c) plane were discovered by Danner et al. Following
the theoretical suggestion of reference [39], it was found
that a small magnetic field along the b axis destroys the
oscillations [34]. We predict that if a magnetic field is ro-
tated in the magic plane from the b + c direction toward
the a direction, the Danner oscillations should exist, even
though the magnetic field has a finite b-component. The
suggested geometry has an advantage over the geometry
of experiment [34], where the magnetic field had a fixed
b-component, that the Danner oscillations would not be
mixed up with the Lebed’ oscillations occurring when the
magnetic field is rotated in the (b, c) plane. This predic-
tion is based on the idea that the Danner oscillations re-
quire that the electron motion in the third direction is
not suppressed by the magnetic field, which happens only
when the magnetic field belongs to a magic plane. We also
predict that the Danner oscillations should disappear at
T > Tmax, where the electron dispersion in the third di-
rection is smeared out by temperature. A detailed study of
magnetic oscillations upon rotation of the magnetic field
around the c∗ axis with different tilts relative to the c∗
axis was recently performed by Lee and Naughton [40].
They found possible to interprete most, but not all, of
the results within a conventional semiclassical theory of
metals.

3 Review of theoretical models

Within the heuristic framework presented in the previous
section, a theoretical study of the problem reduces to the
following two parts:

(a) how a magnetic field induces the negative temperature
dependence of resistivity dρaa/dT < 0 in a 2D metal
with a strong Q1D anisotropy (2D problem).

(b) How the electron tunneling in the third direction does
or does not suppress the effect found in part (a) de-
pending on the orientation of the magnetic field in the
(b, c) plane (3D problem).

From the above formulation, it is clear that the 3D
problem (b) can be addressed only after the 2D problem
(a) has been solved. In other words, we believe that the
insulating temperature dependence of resistivity (problem
(a)) and the drop of resistivity at the magic angles (prob-
lem (b)) have a common origin.

However, until recently, theoretical and experimental
efforts were focused on solving problem (b) without recog-
nizing and addressing problem (a). Soon after the experi-
mental discovery of the magic angles [16–18], a number of
theories tried to explain this effect semiclassically [41–43].
The theories [41,42] found the magic angles effect in ρbb
and ρcc, but not in ρaa. Microscopic analysis [29] of the
“hot spots” model [43] demonstrated that it cannot ex-
plain the huge magnetoresistance and the magic angles
effect. In all of these models, resistivity was calculated
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by introducing a relaxation time τ phenomenologically
and studying semiclassical electron trajectories in the mo-
mentum space. These theories assumed that relaxation
mechanism does not change dramatically as the magnetic
field is rotated. In view of experiment [4], this assump-
tion is completely wrong, because it is the switching be-
tween metallic and insulating states and the corresponding
change in the relaxation mechanism that causes the magic
angles effect.

Another explanation of the magic angles was proposed
on the basis of the Luttinger liquid concept in refer-
ence [39] (see also Ref. [44]). This theory suggested that
the magic angles effect reflects the change of the effective
dimensionality of the system: The system is a 2D Lut-
tinger liquid at generic angles, and a 3D normal Fermi
liquid at the magic angles. The prediction of the theory
that even a small b-component of the magnetic field would
destroy coherence of the interchain hopping in the c direc-
tion was confirmed experimentally in references [34,44].
However, this theory focuses only on problem (b), but
does not address the issue of the temperature dependence
of resistivity and does not explain how problem (a) may
be solved. Moreover, in the actual calculations [39], tc is
treated as a perturbation to a 1D system, and the much
greater tunneling amplitude tb is effectively neglected. For
this reason, the theory [39] actually studies the dimension-
ality crossover between 2D and 1D, not 2D and 3D, and
the very important c-component of the magnetic field does
not appear in these calculations.

The very first calculation of the angular dependence
of ρaa was done by Lebed’ and Bak [20] before the ex-
perimental discovery of the magic angles. However, it pre-
dicted maxima, not minima, of resistance at the magic
angles. This discrepancy was corrected in the subsequent
work [45]. In this theory, resistivity ρaa ∝ 1/τ is studied
by calculating the rate of umklapp scattering 1/τ in the
lowest order of perturbation theory. This approach allows
to study how resistivity depends on temperature and on
the magnitude and orientation of the magnetic field. Ac-
cording to reference [45], the temperature dependence of
the scattering rate changes with the magnetic field ori-
entation: 1/τ ∝ T 2 at the magic angles and 1/τ ∝ T
at generic angles, because the electron dispersion law is
2D and 1D in these cases, respectively. At low enough
temperatures, the difference between the T 2 and T laws
should result in sharp dips of resistance at the magic
angles. However, the theory predicts that both temper-
ature dependences are metallic (dρaa/dT > 0), whereas
experimentally the temperature dependence is insulating
(dρaa/dT < 0) for nonmagic angles at T < Tmin and for
all angles at Tmax < T < Tmin [2–4]. Thus, the theory [45]
is not adequate either.

In reference [20], Lebed’ and Bak considered also the
scattering rate of electrons on impurities renormalized by
the electron-electron interaction in the lowest order and
noted that it grows with decreasing temperature, when
a magnetic field is applied. It is easy to check analyti-
cally that this scattering rate is approximately constant
without magnetic field and, if tc is neglected, grows as

ln(EH/T ) in a magnetic field at T < EH . We calculated
this diagram numerically in the 2D case and found that
it increases by only about 20% in the relevant range of
fields and temperatures, which is insufficient to explain the
experiment. (Our numerical calculation of the umklapp
electron-electron scattering diagram in the 2D case also
confirmed that application of a magnetic field changes the
temperature dependence of 1/τ from T 2 to T at T < EH ,
as discussed in the preceding paragraph.)

After the magnetic-field-induced insulating temperature
dependence of ρaa was discovered experimentally, theory
started to address this problem specifically. References
[2,3] suggested that resistance increases at T < Tmin, be-
cause the “one-dimensionalization” of (TMTSF)2X by a
magnetic field induces formation of a pseudogap in the
charge channel. It is well known that charge and spin
excitations are independent in a 1D system [12]. In the
presence of umklapp scattering and repulsive interactions,
charge excitations may develop a pseudogap, whereas
spin excitations may remain gapless. This results in in-
sulating temperature dependence of resistivity coexisting
with metallic behavior of spin susceptibility. This effect
is observed experimentally in the sulfur-based compounds
(TMTTF)2X [46], which are more 1D than the selenium-
based compounds (TMTSF)2X (see Refs. [3,9,13]). In-
duction of a charge pseudogap by a magnetic field would
explain insulating behavior of all components of the resis-
tivity tensor in (TMTSF)2PF6 [22–25] and the NMR data
in (TMTSF)2ClO4 [2] (although the transverse resistivity
in (TMTSF)2ClO4 behaves differently [27,28]).

However, in order to achieve quantitative agreement
with the experiment, this theory assumes that tb ∼
50 K [2] or 15–30 K [3], which is almost an order of
magnitude smaller that the commonly accepted value
tb ≈ 250 K deduced from the b-axis plasma edge [35]
and the (a,b)-plane angular magnetic oscillation [34]. In
this theory, the magnitude of the pseudogap is determined
by the energy scale where the renormalization-group
(RG) equations (also called the parquet equations [47])
for the forward, backward, and umklapp scattering am-
plitudes of electron-electron interaction diverge. However,
because the chains are strongly coupled, it is not cor-
rect to limit the RG equations to only those three ampli-
tudes of interaction. It is necessary to include an infinite
number of the amplitudes of interaction between different
chains, which makes the RG equations integro-differential
[48]. For a Q1D conductor in a magnetic field, the
integro-differential RG equations were derived and solved
numerically without umklapp in references [31,49,50].
The temperature where a solution of the RG equa-
tions diverges was interpreted in the latter papers as
the FISDW transition temperature Tc. On the other
hand, in a purely 1D case, the energy where a solu-
tion of the RG equations diverges is conventionally in-
terpreted as a pseudogap energy, not as a transition
temperature, because thermodynamic phase transitions
are not possible in 1D systems [51]. Thus, the problem
is whether the RG equations for a Q1D conductor in
a magnetic field can simultaneously describe formation
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of a pseudogap at a high temperature and the FISDW
transition at a much lower temperature. In a purely 1D
case this is possible, because the RG equations sepa-
rate exactly into two independent sets of equations for
the spin and charge channels [47]. However, in a higher-
dimensional case, all of the interaction amplitudes are
coupled, and separation of the RG equations into inde-
pendent channels does not seem feasible. It is not clear
why a pseudogap energy and a FISDW transition temper-
ature would differ by an order of magnitude in the RG
approach, if both are produced by the same mechanism of
“one-dimensionalization” and enhancement of the Peierls
susceptibility by a magnetic field.

Even after the RG equations are solved, the tempera-
ture dependence of resistivity still needs to be calculated.
This issue was addressed in the theory by Gor’kov [52,53],
which suggested that resistivity is given by the same di-
agram that was studied in references [20,45], but with a
renormalized, temperature-dependent umklapp scattering
amplitude. In the standard model of the FISDW transi-
tion [54], where tb � EH , and electron-electron interac-
tion is repulsive, it is safe to neglect the superconducting
channel contribution to the RG equations [31]. In this case,
the RG equations reduce to the conventional ladder-RPA
equations. The umklapp scattering amplitude, renormal-
ized according to these equations, grows when T → Tc.
Because ρaa is proportional to the square of the umklapp
amplitude, the insulating regime dρaa/dT < 0 might be
achieved if the umklapp amplitude grows faster than the
phase space factor T or T 2 decreases. One might expect,
though, that resistivity would start to grow only in a nar-
row vicinity of the FISDW transition, not at the tempera-
tures an order of magnitude higher than Tc. Whether this
approach can quantitatively explain the experiment, par-
ticularly the role of a magnetic field, can be verified by
numerical calculations. In the rest of the paper, we study
this issue in detail. The approach of references [52,53] is
attractive, because it permits straightforward calculation
of transport coefficients and connects naturally with the
standard, successful model of FISDW on one hand and
with the simpler, better-understood transport model of
references [20,45] on the other hand.

4 Q1D conductor in a magnetic field

For the following theoretical description, we select the x, y,
and z axes along the crystal directions a, b, and c, which
are not orthogonal in the triclinic (TMTSF)2X crystals.
Electrons can tunnel between different chains with the am-
plitudes tl, where l = (l1, l2) is a 2D integer vector that
determines the transverse displacement of the electron,
dl = l1b + l2c, in the process of tunneling. The Fermi
surface of 1D electron motion along the chains consists of
two Fermi points characterized by the Fermi wave vectors
±kF. We label the electrons with the wave vectors close to
±kF by the index α = ±. In the vicinity of the Fermi en-
ergy, the energy dispersion law of the longitudinal electron
motion can be linearized as ε = ±~vFkx, where ~ is the
Planck constant, vF is the Fermi velocity, the energy ε is
counted from the Fermi energy, and the longitudinal wave

vector kx is counted from ±kF for the two Fermi points. In
the absence of magnetic field, the total, longitudinal and
transverse, electron dispersion law is

εα(k) = α~vFkx +
∑

l

2tl cos(k⊥dl + αϕl), (1)

where k = (kx, ky, kz) = (kx,k⊥) are the electron wave
vectors along the x, y, and z axes. The phases ϕl in
the transverse dispersion law (1) of a triclinic crystal are
determined by the amplitudes of tunneling to different
molecules belonging to the same chain [56]. In this pa-
per, we present analytical formulas for a general disper-
sion law (1) with any number of the transverse tunnel-
ing amplitudes tl, but we perform numerical calculations
only for the 2D case with the two tunneling amplitudes:
tb = t1,0 between the nearest and t′b = t2,0 between the
next-nearest chains in the b direction. The values of the
corresponding phases, ϕb and ϕ′b, are not known reliably.
According to Yamaji [56], ϕ′b = −π/2, and ϕb varies from
7◦ to 40◦ when temperature varies from 300 K to 1.7 K in
(TMTSF)2PF6. In our numerical calculations, we assume
ϕ′b = 2ϕb for simplicity and consider several values of ϕb
between the two extremal values ϕb = 0 and ϕb = π/4.

Suppose that a magnetic field H is applied perpendic-
ular to the chains. It can be introduced into the Hamil-
tonian of the system via the Peierls-Onsager substitution
k→ k−x[H×ex]e/~C, where ex is the unit vector along
the x axis, e is the electron charge, and C is the speed of
light. The eigenfunctions ψα,k of noninteracting electrons
in the magnetic field H are [31]

ψα,k(x, ny , nz) =
1√
LN

exp

[
i

(
kxx+ kynyb+ kznzc

+ α
∑

l

2tl
~vFGl

sin(k⊥dl −Glx+ αϕl)

)]
, (2)

where Gl = ex · [dl ×H]e/~C are the wave vectors pro-
portional to the magnetic field, ny and nz are the integer
coordinates of the chains in the y and z directions, L is
the length of a chain, and N is the total number of the
chains. The eigenenergies of eigenfunctions (2) are

ε = α~vFkx, (3)

thus the electron dispersion law is effectively 1D in the
magnetic field.

The single-particle Green function of noninteract-
ing electrons in the magnetic field H was found in
reference [36]:

Gα(x, x′,k⊥, iωm) =
∫ ∞
−∞

dkx
2π

exp[ikx(x− x′)]
iωm − α~vFkx

× exp

(
iα
∑

l

2tl
~vFGl

[sin(k⊥dl −Glx+ αϕl)

− sin(k⊥dl −Glx
′ + αϕl)]

)
, (4)
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γ2(q, iΩm) =
g2 − (g2

2 − g2
3)χ0(−q,−iΩm)

[1− g2χ0(q, iΩm)][1− g2χ0(−q,−iΩm)]− g2
3χ0(q, iΩm)χ0(−q,−iΩm)

, (9)

γ3(q, iΩm) =
g3

[1− g2χ0(q, iΩm)][1− g2χ0(−q,−iΩm)]− g2
3χ0(q, iΩm)χ0(−q,−iΩm)

· (10)

where ωm = 2π(m + 1/2)T is the Matsubara frequency.
The Green function (4) is a product of two terms: The first
term is the Green function of 1D electrons, whereas the
second, exponential term represents the transverse mo-
tion of the electrons. Only the second term contains the
magnetic field via the wave vectors Gl, which introduce
periodic dependences on x and make the Green function
(4) not translationally invariant along the chains. In 2D
case, we denote the magnetic wave vector G1,0 as simply
G. The integral over kx in equation (4) can be easily taken,
but the Lehmann representation (4) is more convenient for
analytic continuation from the Matsubara frequencies to
the real frequencies.

5 Renormalization of the umklapp scattering
amplitude due to SDW instability

The tendency of a Q1D system toward the SDW instabil-
ity manifests itself in divergence of the density-wave sus-
ceptibility, which is shown diagrammatically in the lowest
order in Figure 1.

In this figure, the solid and dashed lines represent the
Green functions of the + and− electrons, and Ωm and q⊥
are the incoming energy and the transverse wave vector.
In the Matsubara technique, the analytic expression for
the bare susceptibility per one chain is [36]

χ0(x′ − x,q⊥, iΩm) = −T
∑
j

∫
bc d2k⊥
(2π)2

×G−(x, x′,k⊥ + q⊥, iωj + iΩm)G+(x′, x,k⊥, iωj)

=
T

2π(~vF)2

λ(x′ − x,q⊥)
sinh[2πT (x′ − x)/~vF]

×
∫ ∞
−∞

d$ sin[(x′ − x)$/~vF]
$ − iΩm

, (5)

where

λ(x,q⊥) =
∫
bc dk⊥
(2π)2

exp

(
− i
∑

l

8tl
~vFGl

× sin(Glx/2) cos(k⊥dl) cos(q⊥dl/2− ϕl)

)
. (6)

In equations (5, 6) and elsewhere, the integration over
the transverse wave vectors k⊥ goes over the Brillouin
zone. Because of the averaging over k⊥, susceptibility (5)
is a translationally invariant function of x′−x, unlike the

x  x

 k⊥+q⊥, iωj+iΩm

 k⊥, iωj

Fig. 1. Feynman diagram for the bare density-wave suscepti-
bility χ0(x′−x,q⊥, iΩm). The solid and dashed lines represent
the Green functions of the + and − electrons.

Green function (4). This allows us to Fourier-transform
equation (5) over x′−x and to obtain χ0(q, iΩm) as a func-
tion of the 3D wave vector q. As follows from equation (5),
χ0(x,q⊥, iΩm) behaves as 1/x when x ≤ vF/2πT . This re-
sults in logarithmical divergence of χ0(q, iΩm), which we
cut off at a small distance x0 = 1/2γkF [54], where γ is
the Euler constant [55].

Because the electron conduction band in (TMTSF)2X
is half-filled, the Fermi wave vector is commensurate with
the crystal lattice wave vector along the chains: 4kF =
2π/a. This relation permits the umklapp scattering pro-
cess, where two “+” electrons are transformed into two
“–” electrons, and the change of the total electron wave
vector, 4kF, is absorbed into the lattice wave vector 2π/a.
The amplitude of this process is conventionally denoted by
γ3 [47]. The one-loop diagram of Figure 1 generates a lad-
der renormalization of the vertices of interaction between
electrons as shown diagrammatically in Figure 2. In this
figure, the wavy lines represent the bare, unrenormalized
vertices of forward (g2) and umklapp (g3) scattering, the
circles represent the corresponding renormalized vertices
γ2 and γ3, and the thin lines inside the circles indicate
spin conservations along the electron lines. Appropriate
for the SDW channel, the + and − electron lines in Fig-
ure 2 have opposite spins. The equations of Figure 2 are
the same as in reference [53]. The analytic expression of
these equations is

γ2(q, iΩm) = g2 + g2χ0(q, iΩm)γ2(q, iΩm)
+g3χ0(−q,−iΩm)γ3(q, iΩm), (7)

γ3(q, iΩm) = g3 + g2χ0(−q,−iΩm)γ3(q, iΩm)
+g3χ0(q, iΩm)γ2(q, iΩm), (8)

and the solution is

(see equations (9) and (10) above)
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=
g2

+
γ2(q,iΩm)

+
g2         γ2(q,iΩm) g3         γ3(q,iΩm)

=
g3

+
γ3(q,iΩm)

+
g2          γ3(q,iΩm) g3         γ2(q,iΩm)

χ0(q,iΩm) χ0(-q,-iΩm)

χ0(-q,-iΩm) χ0(q,iΩm)

Fig. 2. Feynman diagrams for the renormalized vertices of for-
ward (γ2) and umklapp (γ3) scattering in the ladder approx-
imation. The wavy lines represent the bare, unrenormalized
vertices of forward (g2) and umklapp (g3) scattering, whereas
the circles represent the corresponding renormalized vertices.
The + and − electron lines (the solid and dashed lines) are im-
plied to have opposite spins. Spin is conserved along the thin
lines inside the circles.

Notice that whenever the umklapp vertex appears in the
r.h.s. of equations (7, 8), the signs of q and iΩm in the
argument of χ0 are reversed.

As temperature decreases, the bare susceptibility
χ0(q, 0) grows until the denominator in equations (9, 10)
vanishes at a certain temperature Tc, which is the FISDW
transition temperature:

[1−g2χ0(q, 0)][1−g2χ0(−q, 0)]− g2
3χ0(q, 0)χ0(−q, 0)=0.

(11)

The interaction amplitudes γ2,3(q, 0) diverge at the transi-
tion temperature. Since equation (11) is a quadratic form
of χ0(q, 0) and χ0(−q, 0), it vanishes at two different tem-
peratures for a given value of q. Usually, it is assumed
that only the higher temperature is physically significant,
and the transition temperature is determined from equa-
tion (11) by selecting the wave vector q that provides the
maximal value for Tc.

By considering equations similar to equation (11),
Lebed’ [57] predicted that the umklapp splitting of the
FISDW instability would result in oscillations of Tc vs.
H, but the effect was not observed experimentally. On
the other hand, the experimental T -H phase diagram of
(TMTSF)2PF6 can be well reproduced while neglecting
umklapp [54]. In order not to spoil the phase diagram
by the umklapp splitting and to avoid unnecessary com-
plications, we assume that g3 is sufficiently small and
neglect it in equation (11) and in the denominator of equa-
tion (10) [58]. Using the conventional band-structure pa-
rameters of (TMTSF)2PF6: ta = 2900 K (EF =

√
2ta),

tb = ta/10, and vF = 2 × 105 m/s, we find that the
choice t′b = 20 K and g̃2 = g2/2π~vF = 0.2288 pro-
duces a T -H phase diagram close to the one observed
experimentally in reference [59] at 12 kbar. The phase di-
agram does not depend on ϕb and is shown in Figure 3. In
this figure, various symbols indicate the integer number
N of the quantized longitudinal wave vector of FISDW:
qx = NG [54]. Note that wide spacing in H between the
points of our calculations would not allow us to observe the

Fig. 3. Phase diagram of a Q1D conductor in the temperature
(T) vs. magnetic field (H) plane calculated from equation (11)
with neglected umklapp interaction g3 = 0. Various symbols
denote the integer values N of the quantized wave vector of
FISDW, qx = NG.

oscillations of Tc vs. H [57], even if we took into account
the umklapp splitting of the FISDW instability. If we set
t′b = 0, the electron spectrum (1) acquires perfect nesting:
ε+(kx, ky) = −ε−(kx, ky−(π−2ϕb)/b), and the SDW tran-
sition temperature T0 = (~vF/πx0) exp(−1/g̃2) = 14.7 K
becomes independent of the magnetic field.

While the Matsubara representation of γ2,3 is useful for
determining the T -H phase diagram, we need the scatter-
ing vertices at the real frequencies to calculate resistivity.
Analytically continuing equation (5) from the Matsubara
frequencies iΩm to the real energies ε, we find the follow-
ing expression for the bare susceptibility:

χ0(q, ε) =
T

(~vF)2

×
∫ ∞
x0

dx
Re {exp(−iqxx)λ(x,q⊥)} exp(ixε/~vF)

sinh(2πTx/~vF)
· (12)

Substituting equation (12) into equations (9, 10), we find
the scattering vertices γ2,3(q, ε) at the real energies ε.

6 Umklapp resistivity of a Q1D metal

Using the variational principle for the Boltzmann equa-
tion [60], we find the following expression for the resis-
tivity along the chains due to electron-electron umklapp
scattering:

ρxx =
2(π~)2bc

e2TLN

×
∑

k1,k2,k3,k4

f0(ε1)f0(ε2)[1− f0(ε3)][1− f0(ε4)]Wk3,k4
k1,k2

,

(13)

where εi = ε(ki) are the energies of electrons in the eigen-
states |ki〉 (2), f0(ε) is the Fermi distribution function,
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F (q, ε) =
bc

(2π)2

Z
d2k⊥

cosh
�
ε

2T

�
+ cosh

�
~vFqx +

P
l 4tl cos(q⊥dl/2− ϕl) cos(k⊥dl)

2T

� · (21)

and Wk3,k4
k1,k2

is the scattering rate of two electrons from
the states |k1〉 and |k2〉 into the states |k3〉 and |k4〉:

Wk3,k4
k1,k2

=
2π
~
|〈k1,k2|γ3|k3,k4〉|2 δ(ε1 + ε2 − ε3 − ε4).

(14)

Here δ(ε) is the Dirac delta function, and the matrix
element is

〈k1,k2|γ3|k3,k4〉 =
∑

n
(1)
y ,n

(2)
y ,n

(1)
z ,n

(2)
z

∫ ∞
−∞

dx1dx2

× ψ+,k1(x1, n
(1)
y , n(1)

z )ψ+,k2(x2, n
(2)
y , n(2)

z )

× ψ∗−,k3
(x2, n

(2)
y , n(2)

z )ψ∗−,k4
(x1, n

(1)
y , n(1)

z )

× γ3(x1 − x2, n
(1)
y − n(2)

y , n(1)
z − n(2)

z , ε2 − ε3).
(15)

The vertex of interaction γ3 is written in the mixed, coor-
dinate and energy, representation, describing the umklapp
scattering of the two “+” electrons with the coordinates
x1 and x2 located on the chains (n(y)

1 , n
(z)
1 ) and (n(y)

2 , n
(z)
2 )

from the states |k1〉 and |k2〉 into the two “−” states |k3〉
and |k4〉 with the same coordinates.

Substituting equation (2) into equation (15) and
changing the variables of integration k

(i)
x → εi via equa-

tion (3), we find the following expression for the resistivity

ρxx =
2(π~)2L3bc

e2TN

∫ ∞
−∞

dε1 dε2 dε3 dε4

(2π~vF)4

× f0(ε1)f0(ε2)[1− f0(ε3)][1− f0(ε4)]W ε3,ε4
ε1,ε2 , (16)

where

W ε3,ε4
ε1,ε2 =

∑
k

(1)
⊥ ,k

(2)
⊥ ,k

(3)
⊥ ,k

(4)
⊥

Wk3,k4
k1,k2

=
bcN
~L3

∫ ∞
−∞

dx′ dx′′
∫

d3q
(2π)2

|γ3(q, ε2 − ε3)|2

× δ(ε1+ε2−ε3−ε4) exp
[
i
(
qx+

ε1+ε4

~vF

)
x′
]

×λ(x′,−q⊥)exp
[
i
(
−qx+

ε2+ε3

~vF

)
x′′
]
λ(x′′,q⊥).

(17)

Using the δ-function from equation (17), we take the
integral over ε4 in equation (16). Then, changing the

integration variables ε1, ε2, and ε3 to ε = ε2 − ε3,
ε′1 = ε1 + (ε2 − ε3)/2, and ε′2 = ε2 + ε3 and taking the
integrals over ε′1 and ε′2, we obtain the final expression for
resistivity:

ρxx =
~(bc)2

32e2T

∫ ∞
−∞

dε
∫

d3q F (q, ε)F (−q, ε) |γ̃3(q, ε)|2,

(18)

where

F (q, ε) =
2T

~vF sinh(ε/2T )

×
∫ ∞
−∞

dx
exp(−iqxx)λ(x,q⊥) sin(xε/~vF)

sinh(2πTx/~vF)
,

(19)

γ̃3(q, ε) =
γ3(q, ε)
2π~vF

, (20)

are dimensionless functions. The renormalized umklapp
vertex γ3(q, ε), given by equations (10, 12), should be sub-
stituted into equations (18, 20). If the renormalization of
γ3 is neglected (γ3 = g3), the integral over ε in equa-
tion (18) can be taken analytically, and the result agrees
with the expressions obtained in references [20,45].

7 Temperature dependence of resistivity
in zero magnetic field

Having obtained the general expression (18) for the
longitudinal resistivity, let us examine the limit of zero
magnetic field first. In this case, F (q, ε) (19) becomes

(see equation (21) above)

The function F (q, ε) (21), confines integration in
equation (18) to the energy interval

|ε| . T (22)

and to the wave-vectors region defined by the two
inequalities:

|~vFqx +
∑

l

4tl cos(q⊥dl/2− ϕl) cos(k⊥dl)| . T, (23)

|~vFqx −
∑

l

4tl cos(q⊥dl/2 + ϕl) cos(k′⊥dl)| . T. (24)

It follows from equations (23, 24) that the integration over
the transverse wave vectors is restricted by the inequality

|Ξ(q⊥,k⊥,k′⊥)| . T, (25)
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where

Ξ(q⊥,k⊥,k′⊥) =
∑

l

4tl[cos(q⊥dl/2− ϕl) cos(k⊥dl)

+ cos(q⊥dl/2 + ϕl) cos(k′⊥dl)]. (26)

The integrals over ε and qx in equation (18) with the func-
tion F (q, ε) (21) can be taken analytically, provided we
neglect dependence of γ3(qx,q⊥, ε) on qx and ε, that is,
replace γ3(qx,q⊥, ε) by γ3(q̄x,q⊥, ε̄), where q̄x and ε̄ are
some characteristic values of qx and ε from the intervals
of integration (22), (23), and (24):

ρxx ≈
π2(bc)4T

16e2vF

∫
d2q⊥d2k⊥d2q′⊥

(2π)6

×
(

Ξ(q⊥,k⊥,k′⊥)/T
sinh[Ξ(q⊥,k⊥,k′⊥)/4T ]

)2

|γ̃3(q̄x,q⊥, ε̄)|2.

(27)

This approximation should be valid provided the peak in
γ3(qx,q⊥, ε) at ε = 0 and q equal to the nesting vector
is wider than temperature, which is the case for temper-
atures not very close to the transition temperature Tc.
Equation (27) with Ξ (26) coincides with the expression
obtained by Gor’kov [52,53] for ϕl = 0, except that we
find an additional factor 1/2 in the argument of sinh, as
in reference [61].

If renormalization of γ3 is neglected, and γ3 is replaced
by a constant g3, then integral (27) gives the volume of
the wave-vectors space restricted by inequality (25). In a
general 2D or 3D case, this volume is proportional to T ,
thus resistance (27) is proportional to T 2:

ρ(2D,3D)
xx ∝ g̃2

3 T
2, (28)

which is the standard result of the Fermi-liquid theory
[14]. In 1D case [62], where Ξ = 0, equation (27) repro-
duces the result of reference [63]:

ρ(1D)
xx ≈ π2bcT

e2vF
|γ̃(1D)

3 (q̄x, ε̄)|2. (29)

The 1D resistance (29) is proportional to temperature T
multiplied by the square of the renormalized umklapp am-
plitude γ3, which may also depend on temperature.

Now let us consider the simplest 2D case where only
one tunneling amplitude tb is kept in equation (26). If
ϕb = 0 (similar equations hold also for ϕb = π/2), then
equation (26) can be factorized [52,53]:

Ξ(qy, ky, k′y)
∣∣∣
ϕb=0

= 8tb cos(qyb/2) cos[(ky + k′y)b/2]

× cos[(ky − k′y)b/2]. (30)

If renormalization of γ3 is neglected (γ3 = g3), then
equation (27) with Ξ from equation (30) gives:

ρ(2D)
xx

∣∣∣
ϕb=0

∝ g̃2
3 T

2 ln2(tb/T ), (31)

which has an extra logarithmic factor compared to equa-
tion (28) [61]. Equations (28, 31) are in agreement with the
results of reference [29], where the so-called “hot spots”
in the distribution of the umklapp scattering time over
the Fermi surface of a Q1D metal were studied. The “hot
spots” are the points where the scattering rate is strongly
enhanced compared to the rest of the Fermi surface, typ-
ically by the factor ln(tb/T ) and occasionally by the fac-
tor 3

√
tb/T . Positions of the hot spots are determined by

the saddle points of the function Ξ(qy, ky, k′y) [29]. When
ϕb 6= 0, π/2, only isolated hot spots exist on the Fermi
surface. Because they occupy a small phase space, the hot
spots do not contribute significantly to resistivity in this
general case, and equation (28) holds. However, in the
special case ϕb = 0, π/2, the entire Fermi surface becomes
“hot” [29], and resistivity acquires the logarithmic factor
of equation (31).

In the special 2D case with only one tunneling am-
plitude tb and ϕb = 0, the electron dispersion (1) has a
perfect nesting at the wave vector qx = 0 and qy = π/b.
The zero-field susceptibility χ0(q, ε), given by equations
(6, 12), diverges logarithmically at ε = qx = 0 and
qy = π/b. Since we neglect g3 in the denominator of equa-
tion (10), the renormalized vertex γ3(0, π/b, 0) becomes

γ3(0, π/b, 0) ∝ g3

g2
2 ln2(T/T0)

, (32)

where T0 = ~vF/(πx0) exp(−1/g̃2) is the SDW transi-
tion temperature. At the same time, condition (25) with
Ξ given by equation (30) restricts integration in equa-
tion (27) to the vicinity of either qy = π/b or ky+k′y = π/b
or ky − k′y = π/b. The first of these conditions is satisfied
at the same wave vector qy = π/b where γ3 (32) diverges.
Assuming that the integral in equation (27) is dominated
by the vicinity of qy = π/b, we find:

ρ(2D)
xx

∣∣∣
ϕb=0

∝ γ̃2
3(0, π/b, 0)T 2 ln2(tb/T ) ∝ g̃2

3 T
2 ln2(tb/T )

g̃4
2 ln4(T/T0)

·

(33)

Equation (33) is analogous to the expression obtained by
Gor’kov [52,53], but differs in the powers of the loga-
rithms. The factor T 2 in equation (33) tends to diminish
resistivity with decreasing temperature, which is charac-
teristic for a metal. On the other hand, the logarithmic
factors in equation (33), both in the numerator and de-
nominator, tend to increase resistance, which is charac-
teristic for an insulator. Which of these two competing
tendencies wins can be found numerically.

In Figure 4, we show temperature dependences of re-
sistivity ρxx(T ) calculated via equations (18, 21) in 2D
case at zero magnetic field. Because we neglected g3 in
the denominator of equation (10), ρxx ∝ g2

3 exactly. In
Figures 4, 5, and 6, we plot the ratio ρxx/g̃2

3 where the di-
mensionless umklapp scattering amplitude g̃3 = g3/2π~vF

cancels out. As discussed in Appendix, the value of g̃3

can be recovered by comparing these figures with the ex-
perimental data. The top solid curve in Figure 4 shows
ρxx(T ) calculated with only one tunneling amplitude tb
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Fig. 4. Temperature dependences of longitudinal resistivity
normalized to the dimensionless umklapp scattering amplitude,
ρxx(T )/g̃2

3 , at zero magnetic field for different values of the
phase ϕb. The solid lines correspond to t′b = 0, in which case
resistivity diverges at T → T0, where T0 = 14.7 K is the SDW
transition temperature. The dotted lines correspond to t′b =
20 K, in which case there is no SDW transition at zero magnetic
field.

and ϕb = 0. We observe that ρxx(T ) has a positive, metal-
lic slope dρxx(T )/dT > 0 at high temperatures, whereas
at lower temperatures the slope is negative. It is surpris-
ing that the negative slope starts at the temperature about
60 K, which is several times higher than the SDW tran-
sition temperature T0 = 14.7 K. This indicates that the
logarithmic factors in equation (33) overcome the T 2 fac-
tor at relatively high temperatures.

Now let us discuss a more general 2D model with only
one tunneling amplitude tb, but with ϕb 6= 0. In this
case, γ3 diverges at the nesting vector qx = 0 and qy =
(π − 2ϕb)/b. The umklapp vertex γ3(0, (π − 2ϕb)/b, 0) ∝
g3/ ln(T/T0) diverges at exactly the same transition tem-
perature T0 as in the case ϕb = 0, but less strongly than
in equation (32), because χ0(0, qy, 0) and χ0(0,−qy, 0) in
equation (10) do not diverge at the same wave vector qy.
At ϕb 6= 0, condition (25) with Ξ given by equation (26)
is not satisfied at the nesting vector qy = (π − 2ϕb)/b in-
dependently of ky and k′y, which further reduces ρxx(T )
compared to equation (33) for ϕb = 0. Temperature de-
pendences ρxx(T ) are shown in Figure 4 by solid curves
for different values of ϕb. All curves have the same val-
ues of tb = 290 K, g̃2 = 0.2288, and T0 = 14.7 K as the
top solid curve with ϕb = 0. While all solid curves di-
verge at the same transition temperature T0, the region of
the negative slope in ρxx(T ) shrinks rapidly with increas-
ing ϕb and becomes much smaller than T0 at ϕb & π/27.
Thus, a non-zero phase ϕb strongly suppresses the precur-
sor effect in resistivity. For the curves with ϕb & π/27, the
behavior of ρxx(T ) qualitatively follows the 2D quadratic
law (28) at the low temperatures T . 2tb/π = 185 K and
the 1D law (29) at the higher temperatures T & 2tb/π.
The slope of ρxx(T ) at T & 2tb/π is rather small, pre-
sumably because the 1D logarithmic renormalization of

γ3 partially compensates the linear temperature factor in
equation (29).

The dotted curves in Figure 4 represent ρxx(T ) for
the 2D model where the tunneling amplitude to the next-
nearest-neighboring chains, t′b = 20 K, is introduced in
addition to tb. Since t′b eliminates nesting in the disper-
sion law (1), the system does not have SDW instability
provided t′b > T0, so γ3 does not diverge. The slope of
the curve with ϕb = 0 changes from negative to positive
at T . 2t′b/π, which creates a maximum in the ρxx(T )
curve. Thus, t′b cuts off the precursor effect in ρxx(T ) at
T ∼ t′b/π, as discussed in references [52,53].

In conclusion, we have confirmed the suggestion by
Gor’kov [52,53] that, in zero magnetic field, the renormal-
ization of umklapp amplitude due to proximity to a SDW
transition can produce a negative slope in ρxx(T ) at tem-
peratures much higher than the SDW transition tempera-
ture T0. This precursor effect is suppressed by a non-zero
phase ϕb in the electron dispersion law, which does not in-
fluence the SDW transition temperature, but shrinks the
temperature region of the negative slope. The second tun-
neling amplitude t′b suppresses the SDW transition tem-
perature and cuts off the negative slope at T . t′b/π. In
(TMTSF)2X, negative slope of ρxx(T ) is not observed in
zero magnetic field and appears only when a magnetic
field is applied. According to the scenario suggested by
Gor’kov [52,53], the negative slope is eliminated by a non-
zero t′b (and, possibly, by a non-zero ϕb, as shown above),
but it is restored by a magnetic field. We examine feasi-
bility of this scenario in the next section.

8 Temperature dependence of resistivity
in a magnetic field

In 2D case, the effect of a magnetic field on a Q1D electron
system is characterized by the wave vector G = ebH/~c
and the cyclotron energy EH = ~vFG = ebHvF/c [64].
Using the parameters vF = 2 × 105 m/s and b = 7.7 Å,
we find that EH/H ≈ 1.8 K/T. Magnetic field enters
equations (18, 19) for resistivity only through the func-
tion λ(x, qy) (6). In 2D case, magnetic field makes λ a
periodic function of x with the period 2π/G: λ(x, qy) =
λ(x + 2π/G, qy), so it can be expanded into a Fourier
series:

λ(x, qy) =
∞∑

n=−∞
An(qy) einGx, (34)

with some coefficients An. Substituting equation (34) into
equation (19), we find:

F (q, ε) =
∞∑

n=−∞

An(qy)

cosh
(
ε

2T

)
+ cosh

(
~vF(qx − nG)

2T

) ·
(35)

As follows from equation (35), the integration in equation
(18) is concentrated in the energy interval |ε| . T and,
at T � EH , in the vicinity of the integer wave vectors
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qx ≈ nG. Assuming that the characteristic width in qx
and ε of the function γ3(q, ε) is greater than temperature,
one could replace γ3(q, ε) by γ3(nG, qy , 0) in the integral
(18). In this case, the integrals over ε and qx can be taken
analytically:

ρ(2D)
xx ≈ π2b2cT

e2vF

∫
dqy

∞∑
n=−∞

|γ̃3(nG, qy, 0)|2

×
∞∑

n1,n2=−∞
An1(qy)An2(−qy)

×
(

(n1 + n2 − n)EH/4T
sinh[(n1 + n2 − n)EH/4T ]

)2

· (36)

At temperatures much lower than the cyclotron energy,
T � EH , only the term with n1 + n2 = n contributes
significantly to equation (36):

ρ(2D)
xx ≈ π2b2cT

e2vF

∫
dqy

∞∑
n=−∞

|γ̃3(nG, qy, 0)|2

×
∞∑

n1=−∞
An1(qy)An−n1(−qy). (37)

Equation (37) is similar to the 1D formula (29), except
for the additional integration over qy and summation over
n. This is a consequence of one-dimensionalization of the
electron spectrum (3) by the magnetic field.

If renormalization of γ3 is neglected (γ3 = g3), then
equation (37) produces a linear temperature dependence
for resistivity in agreement with Lebed’s results [20,45]
for T � EH . When renormalization of γ3 is taken into
account, γ3(q, 0) diverges at a certain wave vector qx =
NG and qy = Qy as T → Tc. Assuming that only the term
with qx = NG dominates the sum (37), we find:

ρ(2D)
xx ≈ π2b2cT

e2vF

∫
dqy|γ̃3(NG, qy, 0)|2

×
∞∑

n=−∞
An(qy)AN−n(−qy). (38)

It is important to emphasize that the function
F (q, ε) (35), while restricting integration over ε and qx,
does not restricted integration over qy significantly (unlike
in zero magnetic field, Sect. 7), because the Fourier coef-
ficients An(qy) are nonsingular, temperature-independent
functions of qy. Thus, the integrals over qy in equations
(36–38) are not restricted to the vicinity of the FISDW
vector Qy. This does not allow us to replace γ3(NG, qy, 0)
by γ3(NG,Qy, 0) and take the latter outside of the inte-
gral, like in equation (33). The integration over qy reduces
the divergence of equation (38) at T → Tc and makes
the resistivity precursor effect of SDW in a magnetic field
weaker than without the field. This happens because the
phase-space restrictions discussed in Section 7 are conse-
quences of the 2D nature of the electron dispersion law (1)

Fig. 5. Temperature dependences of the umklapp resistivity at
t′b = 20 K for different values of the phase ϕb in the magnetic
fields 5, 15, and 25 T (curves a, b, and c, respectively) and
without magnetic field (dots).

at zero magnetic field, whereas a nonzero field makes the
electron spectrum (3) one-dimensional.

In Figure 5, we show temperature dependences of re-
sistivity calculated via equations (18, 35) for t′b = 20 K,
the phases ϕb = 0, π/27, and π/4, and the magnetic fields
H = 0, 5, 15, and 25 T. In the case of ϕb = 0 (the top
panel), only a very strong magnetic field H = 25 T re-
stores the negative slope of resistivity, dρxx/dT < 0. This
result cannot be applied to explaining experiments [2–4],
because for ϕb = 0 the slope of resistivity is already neg-
ative at 15 < T < 60 K in zero magnetic field, which
does not agree with the experiment. On the other hand,
once we increase ϕb to make the zero-field slope positive,
the effect of the magnetic field becomes very weak out-
side of a narrow vicinity of Tc for both a very small phase
ϕb = π/27 (the middle panel of Fig. 5) and a rather big
phase π/4 (the bottom panel of Fig. 5). If we keep ϕb = 0
and increase t′b to the values 30 K or 40 K, the zero-field
slope becomes positive, but only an enormous magnetic
field of 50 T makes the slope negative (see Fig. 6) [65].
One may conclude that in the case ϕb = 0 the negative
slope of resistance occupies a substantial range of mag-
netic fields only at very strong fields such that EH > t′b:
H = 25 T for t′b = 20 K (the top panel of Fig. 5) and
H = 50 T for t′b = 30 and 40 K (Fig. 6). This scenario
is hard to reconcile with the experiment, because, accord-
ing to the standard theory of FISDW [54], the condition
EH > t′b corresponds to the magnetic fields where the last,
N = 0 phase transition in the FISDW cascade takes place,
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Fig. 6. Temperature dependences of the umklapp resistivity
at t′b = 30 K (top panel) and t′b = 40 K (bottom panel) for
ϕb = 0 in the magnetic fields 5, 25, and 50 T (curves a, b, and
c, respectively) and without magnetic field (dots).

whereas the negative slope in resistance occurs at much
lower magnetic fields.

We conclude that the FISDW precursor scenario [52,53]
cannot explain the anomalous temperature dependence of
resistivity in Q1D conductors in a magnetic field observed
in experiments [2–4]. The insulating temperature depen-
dence of resistivity, dρxx/dT < 0, does exist in this sce-
nario at T � Tc for a certain choice of the transverse
dispersion law of electrons, however the effect is present
even without magnetic field in this case. If the transverse
dispersion law is modified to suppress the insulating be-
havior in zero field, then applying a magnetic field pro-
duces a negative slope in the temperature dependence of
ρxx(T ) only either in a narrow vicinity of Tc or at very
strong fields such that EH > t′b.

9 Temperature dependence of nuclear
magnetic relaxation

In reference [2], temperature dependence of the NMR re-
laxation rate in (TMTSF)2ClO4 was measured and was
discussed as an evidence for a charge pseudogap forma-
tion. In this section, we study the effect of a magnetic field
on the NMR relaxation rate within the FISDW precursor
scenario.

According to the theory of the NMR relaxation via the
electron spin fluctuations [66] (see also Ref. [9]), the NMR
relaxation rate 1/T1 is proportional to the imaginary part

of the electron spin susceptibility:

1
T1
∝ T

∑
q

Imχ(q, ωn)
ωn

, (39)

where ωn is the nuclear Larmor frequency. The coefficient
of proportionality in equation (39) depends on the hyper-
fine interaction parameters. In Q1D compounds, the sum
over the wave vectors q in equation (39) can be separated
into the contribution from the uniform spin susceptibility
at qx close to qx = 0 and the contribution from the anti-
ferromagnetic spin fluctuations at qx close to qx = 2kF:

T−1
1 = T−1

1 (qx ≈ 0) + T−1
1 (qx ≈ 2kF). (40)

In references [2,67], the temperature dependences of
each term in equation (40) were measured separately in
(TMTSF)2ClO4 in the magnetic field 15 T along the
c∗ axis. It was found that the antiferromagnetic term
T−1

1 (qx ≈ 2kF) starts to grow below the same tem-
perature Tmin that separates the metallic and insulat-
ing temperature dependences of resistivity (dρxx/dT > 0
and dρxx/dT < 0). It was claimed that the growth of
T−1

1 (qx ≈ 2kF) is a manifestation of the opening of a
charge pseudogap in the spectrum of electron excitations.

In the ladder approximation, the renormalized spin
susceptibility χ(q, ω) is given by the Feynman diagrams
similar to those shown in Figures 1 and 2:

χ(q, ω) =
χ0(q, ω)[1−g2χ0(−q,−ω)]

[1−g2χ0(q, ω)][1−g2χ0(−q,−ω)]−g2
3χ0(q, ω)χ0(−q,−ω)

·

(41)

Neglecting the umklapp splitting of the FISDW instabil-
ity, i.e. setting g3 = 0 in the denominator of (41), and
taking the zero-frequency limit in equation (39), because
the nuclear Larmor frequency is small compared to all
other energies, we find:

1
T1(qx ≈ 2kF)

∝ T
∑
q

limω→0 Imχ0(q, ω)/ω
[1− g2χ0(q, 0)]2

· (42)

T−1
1 (qx ≈ 2kF) given by equation (42) does not de-

pend on the phase ϕb. The temperature dependence of
T−1

1 (qx ≈ 2kF) calculated via equation (42) with t′b = 20 K
is shown in Figure 7. We see that T−1

1 (qx ≈ 2kF) be-
haves in a magnetic field in the same way as resistivity
does, i.e. it grows and deviates from the zero-field curve
only in a narrow vicinity of the critical temperature. Thus,
we conclude that the FISDW precursor scenario does not
agree with the experimental behavior of the NMR relax-
ation rate in (TMTSF)2ClO4 in a strong magnetic field.
The results of our calculations are very similar to those
of reference [68] for a SDW transition without magnetic
field [55].

10 Conclusions

In this paper we presented a heuristic, semiphenomeno-
logical explanation of the anomalous temperature depen-
dence of resistivity of Q1D conductors in a magnetic field
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Fig. 7. Temperature dependences of the 2kF component of
the NMR relaxation rate (in arbitrary units) at zero (dots)
and nonzero (solid curves) magnetic field for t′b = 20 K.

observed in experiments [2–4] reviewed in Section 1. Ac-
cording to this picture (Sect. 2), a Q1D conductor behaves
like an insulator (dρxx/dT < 0), when its effective dimen-
sionality is one, and like a metal (dρxx/dT > 0), when its
effective dimensionality is greater than one. Applying a
magnetic field reduces the effective dimensionality of the
system and switches the temperature dependence of resis-
tivity between the insulating and metallic laws depending
on the magnitude and orientation of the magnetic field.
Using this picture, we predicted that the Danner oscil-
lations of ρcc may be observed when a magnetic field is
rotated in the magic plane from the b + c direction to-
ward the a direction. We critically analyzed whether vari-
ous microscopic models suggested in literature can justify
our heuristic picture and found that none of the models is
fully satisfactory (Sect. 3). We studied the FISDW precur-
sor scenario suggested by Gor’kov [52,53] in detail both
analytically and numerically (Sects. 4–9) and found that
it does not agree with the experimental observations. In
the rest of this section, we speculate about possible alter-
native approaches to solving the problem.

1. Within the FISDW precursor scenario, we studied
only the umklapp scattering rate 1/τ . In the language of
Feynman diagrams, 1/τ is related to the imaginary part
of the electron self-energy Σ. Via the Kramers-Kronig re-
lations for Σ, any precursor effects in ImΣ should also
affect ReΣ. Because ReΣ is related to the electron den-
sity of states, a pseudogap may open in the single-electron
spectral density as a precursor of FISDW. Potentially,
the pseudogap may affect transport properties of the sys-
tem as strongly as the renormalization of scattering rate
studied in this paper. ReΣ also determines the residue Z
of the single-electron Green function, which is finite for
a Fermi liquid and vanishes for a Luttinger liquid. ReΣ
can be straightforwardly calculated using the methods of
this paper. On the other hand, relationship between the
single-electron and transport properties is not straight-
forward. For example, the residue Z may cancel out
from resistivity due to the Ward identities [69]. Reliable

calculations of resistivity require taking into account cor-
rections to the vertex of interaction between electrons and
electromagnetic field, which is a difficult problem for in-
elastic electron-electron interaction [70].

2. The ladder approximation utilized in this paper does
not take into account contributions from superconducting
channel, which, on one hand, plays a very important role
in one dimension and, on the other hand, is sensitive to a
magnetic field. The magnetic field may induce an insulat-
ing behavior by suppressing superconducting fluctuations,
which compensate insulating fluctuations at zero magnetic
field. Including both density-wave and superconducting
channels naturally leads to the parquet equations. If the
parquet equations in a magnetic field [31,49,50] are gen-
eralized to include the umklapp amplitude, one may try
to find out whether they can be decomposed into two dis-
connected sets of equation analogously to the spin-charge
separation in 1D case. This is a nontrivial possibility, be-
cause the number of coupled equations is infinite, and the
equations are nonlinear. Nevertheless, if the equations do
decouple, the two sets of equations would diverge at two
different temperatures, one of which could be identified
with Tmin and another with Tc. An additional technical
problem is that the equations of references [31,49,50] are
applicable only at T . EH , whereas Tmin ∼ EH , so the
parquet equations need to be derived in the difficult range
T & EH . The parquet approach may require to assume a
rather small effective value for tb [71,72].

3. Electron-electron scattering contributes to electrical
resistivity only via the umklapp processes, which do not
conserve the total electron momentum [60]. For commen-
surate systems, such as (TMTSF)2X, the umklapp scat-
tering process that changes the total electron momentum
by 4kF = 2π/a, where a is the lattice spacing in the a
direction, is usually considered. However, in the presence
of a magnetic field, the total electron momentum may also
change by a multiple of G, the wave vector of the mag-
netic field. Since this kind of umklapp exists only in a
magnetic field, it may be a natural source of magnetore-
sistance in a Q1D system. It is reasonable to expect that
this mechanism works effectively only at T . EH . This
could generate Tmin ∼ EH without invoking pseudogaps
originating from renormalization, whose values tend to be
close to Tc. On the other hand, this mechanism would not
explain the insulating behavior of the transverse resistiv-
ities ρyy and ρzz and the NMR relaxation rate. However,
the recent experiment [24], where metallic temperature
dependence was found for ρzz and insulating for ρxx and
ρyy, may be in favor of this or another kinetic mechanism
and against a charge-gap scenario.

Undoubtedly, the anomalous temperature dependence
of resistivity in Q1D conductors in a magnetic field poses a
tough theoretical challenge and solving this difficult puzzle
would greatly enrich the condensed-matter physics.
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Appendix

The absolute values of ρxx in (TMTSF)2PF6 can be found
in Figures 1 and 2 of reference [6], Figure 20 of refer-
ence [9], Figure 4 of reference [13], and Figures 2 and 3
of reference [61]. From these data, as well as from refer-
ence [73], we find that ρxx ≈ 18 µΩ cm at T = 20 K.
Comparing this experimental value of resistivity with the
theoretical curves in Figure 4, we find g̃3 = 0.17 at ϕb = 0
or g̃3 = 0.77 at ϕb = π/4. On the other hand, taking the
value ρxx ≈ 1 mΩ cm at T = 300 K [6,9], we would find
g̃3 ≈ 1.

In reference [61], the experimental temperature depen-
dence of ρxx in (TMTSF)2PF6 was fit neglecting renor-
malization of γ3, and the value g(GM)

3 = 0.21 was found.
However, because our equation (13) differs from equa-
tion (3) of reference [61] by a factor (2π)3, and a factor
0.5 is missing in equation (7) of reference [61], the value
g

(GM)
3 = 0.21 corresponds to g̃3 = 2π3/2g

(GM)
3 = 2.34 in

our notation. The ratio of this value and the values quoted
in the preceding paragraph, 2.34/0.77 = 3.3, represents
the effect of renormalization of γ3 by the SDW diagrams.

According to the Drude formula, resistivity along the
chains is

ρxx =
πbc~

2e2vFτ
=

4π
ω2
pτ
, (43)

where τ is the relaxation rate, and ω2
p = 8e2vF/bc~ is the

plasma frequency. Using the values of vF, b and c, we find
ωp = 970 cm−1, which is close to the value ωp = 1.1× 104

cm−1 from reference [61]. Comparing equation (43) with
the quoted above experimental values of ρxx, we find
1/τ ≈ 40 K at T = 20 K and 1/τ ≈ 2200 K at T = 300 K.
One may notice that both of these values for 1/τ are
greater than the corresponding temperatures: 1/τ > T .
For that reason, it may be more appropriate to use 1/τ ,
rather than T , as an infrared cutoff of the renormalization.
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